Уран, фотография "Вояджера - 2". |
Уран — седьмая по удалённости от Солнца, третья по диаметру и четвёртая по
массе планета Солнечной системы. Была открыта в 1781 году английским астрономом
Уильямом Гершелем и названа в честь греческого бога неба Урана, отца Кроноса (в
римской мифологии Сатурна) и, соответственно, деда Зевса.
Уран стал первой планетой, обнаруженной в Новое время и при помощи
телескопа. Об открытии Урана Уильям Гершель объявил 13 марта 1781 года, тем
самым впервые со времён античности расширив границы Солнечной системы в глазах
человека. Несмотря на то, что порой Уран различим невооружённым глазом, ранние
наблюдатели никогда не признавали Уран за планету из-за его тусклости и
медленного движения по орбите.
В отличие от газовых гигантов — Сатурна и Юпитера, состоящих в основном из
водорода и гелия, в недрах Урана и схожего с ним Нептуна отсутствует
металлический водород, но зато много высокотемпературных модификаций льда — по
этой причине специалисты выделили эти две планеты в отдельную категорию
«ледяных гигантов». Основу атмосферы Урана составляют водород и гелий. Кроме
того, в ней обнаружены следы метана и других углеводородов, а также облака изо
льда, твёрдого аммиака и водорода. Это самая холодная планетарная атмосфера
Солнечной системы с минимальной температурой в 49 К (−224 °C). Полагают, что
Уран имеет сложную слоистую структуру облаков, где вода составляет нижний слой,
а метан — верхний. В отличие от Нептуна, недра Урана состоят в основном изо
льдов и горных пород.
Так же, как и у других газовых гигантов Солнечной системы, у Урана имеется
система колец и магнитосфера, а кроме того, 27 спутников. Ориентация Урана в
пространстве отличается от остальных планет Солнечной системы — его ось
вращения лежит как бы «на боку» относительно плоскости обращения этой планеты
вокруг Солнца. Вследствие этого планета бывает обращена к Солнцу попеременно то
северным полюсом, то южным, то экватором, то средними широтами.
В 1986 году американский космический аппарат «Вояджер-2» передал на Землю
снимки Урана с близкого расстояния. На них видна «невыразительная» в видимом
спектре планета без облачных полос и атмосферных штормов, характерных для
других планет-гигантов. Однако в настоящее время наземными наблюдениями удалось
различить признаки сезонных изменений и увеличения погодной активности на
планете, вызванных приближением Урана к точке своего равноденствия. Скорость
ветров на Уране может достигать 240 м/с.
Люди наблюдали Уран ещё и до Уильяма Гершеля, но обычно принимали его за
звезду. Наиболее ранним задокументированным свидетельством этого факта следует
считать записи английского астронома Джона Флемстида, который наблюдал его в
1690 году, по крайней мере, 6 раз, и зарегистрировал как звезду 34 в созвездии
Тельца. С 1750 по 1769 год французский астроном Пьер Шарль ле Моньер наблюдал
Уран 12 раз. Всего Уран до 1781 года наблюдался 21 раз.
Во время открытия Гершель участвовал в проекте наблюдений параллакса звёзд,
используя телескоп своей собственной конструкции, и 13 марта 1781 года впервые
увидел эту планету из сада своего дома № 19 на Нью Кинг стрит (город Бат,
графство Сомерсет в Великобритании), но сообщил о ней лишь через полтора месяца
— 26 апреля, причём как о «комете».
Французский астроном Жозеф Лаланд предложил назвать планету в честь её первооткрывателя
— «Гершелем». Предлагались и другие названия: например, Кибела, по имени,
которое в античной мифологии носила жена бога Сатурна. Немецкий астроном Иоганн
Боде первым из учёных выдвинул предложение именовать планету Ураном, в честь
бога неба из греческого пантеона. Он мотивировал это тем, что «так как Сатурн
был отцом Юпитера, то новую планету следует назвать в честь отца Сатурна».
Наиболее раннее официальное именование планеты Ураном встречается в научной
работе 1823 года, уже через год после смерти Гершеля. Прежнее название
«Georgium Sidus» или «Георг» встречалось уже нечасто, хотя в Великобритании оно
и использовалось в течение почти 70 лет. Окончательно же Ураном планета стала
называться только после того, как издательство Морского альманаха Его
Величества «HM Nautical Almanac Office» в 1850 году само закрепило это название
в своих списках.
Уран — единственная планета, название которой происходит не из римской, а
из греческой мифологии. Прилагательным производным от «Урана» считается слово
«уранианский». Астрономический символ, обозначающий Уран, является гибридом
символов Марса и Солнца. Причиной этого называется то, что в древнегреческой
мифологии Уран-небо находится в объединённой власти Солнца и Марса.
Средняя удалённость планеты от Солнца составляет 19,1914 а. е. (2,8 млрд
км). Период полного обращения Урана вокруг Солнца составляет 84 земных года.
Расстояние между Ураном и Землёй меняется от 2,7 до 2,9 млрд км. Большая
полуось орбиты равна 19,229 а. е., или около 3 млрд км. Интенсивность
солнечного излучения на таком расстоянии составляет 1/400 от значения на орбите
Земли. Впервые орбитальные элементы Урана были вычислены в 1783 году
французским астрономом Пьером Симоном Лапласом, однако со временем у них были
выявлены несоответствия с наблюдаемым движением планеты. В 1841 году британец
Джон Кауч Адамс первым предположил, что ошибки в расчётах вызваны
гравитационным воздействием ещё не открытой планеты. В 1845 году французский
математик Урбен Леверье начал независимую работу по вычислению элементов орбиты
Урана, а 23 сентября 1846 года Иоганн Готфрид Галле обнаружил новую планету,
позже названную Нептуном — почти в том же положении, в каком её предсказывал
Леверье. Период вращения Урана вокруг своей оси составляет 17 часов 24 минуты.
Однако, как и на других планетах-гигантах, в верхних слоях атмосферы Урана дуют
очень сильные ветры в направлении вращения, достигающие скорости 240 м/c. Таким
образом, вблизи 30 градусов южной широты некоторые части атмосферы делают
оборот вокруг планеты всего за 14 часов.
Уран — его кольца и спутники. |
Плоскость экватора Урана наклонена к плоскости его орбиты под углом 97,86°
— то есть планета вращается, «лёжа на боку». Это даёт полностью отличный от
других планет Солнечной системы процесс смены времён года. Если другие планеты
можно сравнить с вращающимися волчками, то Уран больше похож на катящийся шар.
В качестве причины такого аномального вращения обычно называется столкновение
Урана с другим планетезималем на раннем этапе его формирования. В моменты
солнцестояний один из полюсов планеты оказывается направленным на Солнце.
Только узкая полоска около экватора испытывает быструю смену дня и ночи; при
этом Солнце в это время расположено очень низко над горизонтом — как в земных
полярных широтах. Через полгода ситуация меняется на противоположную: «полярный
день» наступает в другом полушарии. Каждый полюс 42 земных года находится в
темноте — и ещё 42 года под светом Солнца. В моменты равноденствия Солнце стоит
«перед» экватором Урана, что даёт почти тот же цикл день/ночь, что и на других
планетах. Очередное равноденствие на Уране наступило 7 декабря 2007 года.
Благодаря такому наклону оси в течение года полярные области Урана получают
больше энергии от Солнца, чем экваториальные. Однако Уран «теплее» в
экваториальных районах, чем в полярных областях. Механизм процесса, вызывающего
такое перераспределение энергии, пока остаётся неизвестным. Причина необычного
положения оси вращения Урана также остаётся пока что в области гипотез, хотя
обычно принято считать, что во время формирования Солнечной системы
протопланета размером примерно с Землю врезалась в Уран и изменила его ось
вращения.
Многие учёные не согласны с данной гипотезой, так как она не может
объяснить, почему ни одна из лун Урана не обладает такой же наклонной орбитой.
Была предложена гипотеза, что ось вращения планеты за миллионы лет раскачал
крупный спутник, впоследствии утерянный.
Во время первого посещения Урана «Вояджером-2» в 1986 году южный полюс
Урана был обращён к Солнцу. Обозначение этого полюса как «южный» установлено
Международным астрономическим союзом, руководствовавшимся при этом тем, что
северный полюс должен быть выше плоскости Солнечной системы. Однако есть
соглашение, согласно которому при упоминании Урана пользуются «правилом правой
руки», когда речь заходит о его полюсах. По такому методу «Вояджер-2» в 1986
году «видел» не южный, а северный полюс планеты. Астроном Патрик Мур
прокомментировал эту проблему следующим лаконичным образом: «Выбирайте любой».
С 1995 по 2006 год видимая звёздная величина Урана колебалась между +5,6 и
+5,9, то есть планета была видна невооружённым глазом на пределе его
возможностей (предел видимости невооружённым глазом равен +6,0). Угловой
диаметр планеты был в промежутке между 3,4 и 3,7 угловыми секундами (для
сравнения: Сатурн: 16-20 угловых секунд, Юпитер: 32-45 угловых секунд). Уран
виден невооружённым глазом в противостоянии на чистом небе в тёмное время
суток, и его можно наблюдать даже в городских условиях с биноклем. В большие
любительские телескопы с диаметром объектива от 15 до 23 см Уран виден как
бледно-голубой диск с явно выраженным потемнением к краю. В более крупные
телескопы с диаметром объектива более 25 см можно различить облака и увидеть крупные
спутники (Титанию и Оберон).
Уран тяжелее Земли в 14,5 раз, что делает его наименее массивной из
планет-гигантов Солнечной системы. Плотность Урана, равная 1,270 г/см³, ставит
его на второе место после Сатурна по наименьшей плотности среди планет
Солнечной системы. Несмотря на то, что радиус Урана немного больше радиуса
Нептуна, его масса несколько меньше, что свидетельствует в пользу гипотезы,
согласно которой он состоит в основном из различных льдов — водного, аммиачного
и метанового. Их масса, по разным оценкам, составляет от 9,3 до 13,5 земных
масс. Водород и гелий составляют лишь малую часть от общей массы (между 0,5 и
1,5 земных масс); оставшаяся доля (0,5 — 3,7 земных масс) приходится на горные
породы (которые, как полагают, составляют ядро планеты).
Стандартная модель Урана предполагает, что Уран состоит из трёх частей: в
центре — каменное ядро, в середине — ледяная оболочка, снаружи —
водородно-гелиевая атмосфера. Ядро является относительно маленьким, с массой
приблизительно от 0,55 до 3,7 земных масс и с радиусом в 20 % от радиуса всей
планеты. Мантия (льды) составляет бо́льшую часть планеты (60 % от общего
радиуса, до 13,5 земных масс). Атмосфера при массе, составляющей всего 0,5
земных масс (или, по другим оценкам, 1,5 земной массы), простирается на 20 %
радиуса Урана. В центре Урана плотность должна повышаться до 9 г/см³. Давление
на границе ядра и мантии должно достигать 8 млн бар (800 ГПа) при температуре в
5000 К. Ледяная оболочка фактически не является ледяной в общепринятом смысле
этого слова, так как состоит из горячей и плотной жидкости, являющейся смесью
воды, аммиака и метана. Эту жидкость, обладающую высокой электропроводностью,
иногда называют «океаном водного аммиака». Состав Урана и Нептуна сильно
отличается от состава Юпитера и Сатурна благодаря «льдам», преобладающим над
газами, оправдывая помещение Урана и Нептуна в категорию ледяных гигантов.
Несмотря на то, что описанная выше модель наиболее распространена, она не
является единственной. На основании наблюдений можно также построить и другие
модели — например, в случае если существенное количество водородного и скального
материала смешивается в ледяной мантии, то общая масса льдов будет ниже, и
соответственно, полная масса водорода и скального материала — выше. В настоящее
время доступные данные не позволяют определить, какая модель правильней. Жидкая
внутренняя структура означает, что у Урана нет никакой твёрдой поверхности, так
как газообразная атмосфера плавно переходит в жидкие слои. Однако, ради
удобства за «поверхность» было решено условно принять сплющенный сфероид
вращения, где давление равно 1 бару. Экваториальный и полярный радиус этого
сплющенного сфероида составляют 25 559 ± 4 и 24 973 ± 20 км . Далее в статье эта
величина и будет приниматься за нулевой отсчёт для шкалы высот Урана.
Температура Урана значительно ниже температуры других планет-гигантов Солнечной
системы. Тепловое излучение планеты очень низкое, и причина этого в настоящее
время остаётся неизвестной. Нептун, схожий с Ураном размерами и составом,
излучает в космос в 2,61 раза больше тепловой энергии, чем получает от Солнца.
У Урана же этот показатель равен 0,042 ± 0,047 Вт/м², и эта величина меньше
той, которую выделяет земное ядро (~0,075 Вт/м²). Измерения в дальней
инфракрасной части спектра показали, что Уран излучает лишь 1,06 ± 0,08 %
энергии от той, что получает от Солнца (то есть избыточная теплота крайне мала,
почти отсутствует). Самая низкая температура, зарегистрированная в тропопаузе
Урана, составляет 49 К, что делает планету самой холодной из всех планет
Солнечной системы — даже более холодной, чем Нептун.
Существуют две гипотезы, пытающиеся объяснить этот феномен. Первая из них
утверждает, что протопланета, предположительно столкнувшаяся с Ураном во время
формирования Солнечной системы и вызвавшая большой наклон его оси вращения,
также «унесла» с собой и часть исходной температуры, оставив планету с уже
заранее исчерпанными запасами тепла. Вторая теория гласит, что в атмосфере
Урана имеется некая прослойка, препятствующая тому, чтобы тепло от ядра
достигало верхних слоёв и выходило за пределы атмосферы в тех же количествах, в
каких поступило в атмосферу. Например, такая конвекция может иметь место в том
случае, когда рядом расположены два различных по составу слоя, которые и могут
препятствовать восходящим «потокам» тепла от ядра.
Отсутствие избыточного теплового излучения планеты значительно затрудняет
определение температуры её недр, однако если предположить, что температурные
условия внутри Урана близки к характерным для других планет-гигантов, то там
возможно существование жидкой воды и, следовательно, Уран может входить в число
планет Солнечной системы, где возможно существование жизни.
Хотя Уран и не имеет твёрдой поверхности в привычном понимании этого слова,
наиболее удалённую часть газообразной оболочки принято называть его атмосферой.
Полагают, что атмосфера Урана начинается на расстоянии в 300 км от внешнего слоя при
давлении в 100 бар и температуре в 320 K. «Атмосферная корона» простирается на
расстояние, в 2 раза превышающее радиус от «поверхности» с давлением в 1 бар.
Атмосферу условно можно разделить на 3 части: тропосфера (-300 км — 50 км ; давление составляет
100 — 0,1 бар), стратосфера (50 — 4000 км ; давление составляет 0,1 — 10−10 бар) и
термосфера/атмосферная корона (4000 — 50000 км от поверхности). Мезосфера у Урана
отсутствует.
График зависимости давления от температуры на Уране. |
Состав атмосферы Урана заметно
отличается от остального состава планеты благодаря высокому содержанию
молекулярного водорода и гелия. Молярная доля гелия (то есть отношение
количества атомов гелия к количеству молекул водорода/гелия) в верхнем слое
атмосферы соответствует массовой фракции 0,26 ± 0,05. Это значение очень близко
к протозвёздной гелиевой массовой фракции (0,275 ± 0,01). Гелий не локализован
в центре планеты, что характерно для других газовых гигантов. Третья
составляющая атмосферы Урана — метан (CH4). Метан обладает хорошо видимыми
полосами поглощения в видимом и ближнем инфракрасном спектре. Молекулы метана
составляют 2,3 % от общей массовой фракции на уровне давления в 1,3 бара. Это
соотношение значительно снижается при повышении высоты из-за чрезвычайно низкой
температуры, что заставляет метан «вымерзать». Присутствие метана, поглощающего
свет красной части спектра, придаёт планете её зелёно-голубой цвет.
Распространённость менее летучих соединений, таких как аммиак, вода и
сероводород, в глубине атмосферы известна плохо. Кроме того, в верхних слоях
Урана обнаружены следы этана (C2H6), метилацетилена (CH3C2H) и диацетилена
(C2HC2H). Эти углеводороды, как предполагают, являются продуктом фотолиза
метана солнечной ультрафиолетовой радиацией. Спектроскопия также обнаружила
следы водяного пара, угарного и углекислого газов. Вероятно, они попадают на
Уран из внешних источников (например, из пролетающих мимо комет).
Тропосфера — самая нижняя и самая плотная часть атмосферы — характеризуется
уменьшением температур с высотой. Температура падает от 320 К в самом начале
тропосферы (на глубине в 300
км ) до 53 К на высоте в 50 км . Температура в самой
верхней части тропосферы (тропопаузе) варьирует от 57 до 49 К в зависимости от
широты. Тропопауза ответственна за большую часть инфракрасного излучения (в
дальней инфракрасной части спектра) планеты и позволяет определить эффективную
температуру планеты (59,1 ± 0,3 K). Тропосфера обладает сложным строением:
предположительно, водные облака могут находиться в промежутке давления от 50 до
100 бар, облака гидросульфида аммония — в диапазоне 20-40 бар, облака аммиака и
сероводорода — в диапазоне 3-10 бар. Метановые же облака могут быть расположены
в промежутке между 1 и 2 барами. Тропосфера — очень динамичная часть атмосферы,
и в ней хорошо видны сезонные изменения, облака и сильные ветры.
После тропопаузы начинается стратосфера, где температура не понижается, а,
наоборот, увеличивается с высотой: с 53 К в тропопаузе до 800—850 К в основной
части термосферы. Нагревание стратосферы вызвано поглощением солнечной
инфракрасной и ультрафиолетовой радиации метаном и другими углеводородами,
образующимися благодаря фотолизу метана. Кроме того, стратосфера нагревается
также и термосферой. Углеводороды занимают относительно низкий слой от 100 до 280 км в промежутке от 10 до
0,1 миллибар и температурные границы между 75 и 170 К. Наиболее
распространённые углеводороды — ацетилен и этан — составляют в этой области
10−7 относительно водорода, который по концентрации схож здесь с метаном и
угарным газом. У более тяжёлых углеводородов, углекислого газа и водяного пара
это отношение ещё на три порядка ниже. Этан и ацетилен имеют свойство
уплотняться в более холодной и низкой части стратосферы и тропопаузе, формируя
туманы. Однако концентрация углеводородов выше этих туманов значительно меньше,
чем на других планетах-гигантах. Наиболее удалённая от поверхности часть
атмосферы — термосфера/корона — имеет температуру в 800—850 К (как и
стратосфера), но причины такой температуры пока не поддаются анализу. Ни
солнечная ультрафиолетовая радиация (ни ближняя, ни дальняя часть
ультрафиолетового спектра), ни полярные сияния не могут обеспечить нужную
энергию (хотя низкая эффективность охлаждения из-за отсутствия углеводородов в
верхней части стратосферы может вносить свой вклад). В дополнение к
молекулярному водороду, термосфера содержит большое количество свободных
водородных атомов. Их маленькая молекулярная масса и большая температура могут
помочь объяснить, почему термосфера простирается на 50 000 км или, говоря
иначе, на два планетарных радиуса. Эта расширенная термосфера/корона является
уникальной особенностью планеты. Именно она является причиной уменьшения
пылевых частиц в кольцах Урана. Термосфера Урана и верхний слой стратосферы
образуют ионосферу, которая занимает высоту от 2000 до 10000 км . Ионосфера Урана
более плотная, чем у Сатурна и Нептуна, по причине отсутствия в верхней
стратосфере концентрации углеводородов. Ионосфера, главным образом,
поддерживается солнечной ультрафиолетовой радиацией и целиком зависит от
солнечной активности. Полярные сияния не являются здесь такими же частыми и
существенными, как на Юпитере и Сатурне.
Урана есть слабо выраженная система колец, состоящая из частиц диаметром от нескольких миллиметров до10
метров . Это — вторая кольцевая система, обнаруженная в
Солнечной системе (первой была система колец Сатурна). На данный момент у Урана
известно 13 колец, самым ярким из которых является кольцо ε (эпсилон). Кольца
Урана, вероятно, весьма молоды — на это указывают промежутки между ними, а
также различия в их прозрачности. Это говорит о том, что кольца не были
сформированы вместе с планетой. Возможно, ранее кольца были одним из спутников
Урана, который разрушился либо при столкновении с неким небесным телом, либо
под действием приливообразующих сил.
Внутренние кольца Урана. Яркое внешнее кольцо — кольцо ε, также видны восемь других колец. |
Урана есть слабо выраженная система колец, состоящая из частиц диаметром от нескольких миллиметров до
В 1789 году Уильям Гершель утверждал, что видел кольца, однако этот факт
выглядит сомнительным, поскольку ещё в течение двух веков после открытия другие
астрономы не могли их обнаружить. Кольцевая система Урана была подтверждена
официально лишь 10 марта 1977 года американскими учёными Джеймсом Л. Элиотом
(James L. Elliot), Эдвардом В. Данемом (Edward W. Dunham) и Дагласом Дж. Минком
(Douglas J. Mink), использовавшими бортовую обсерваторию Койпера. Открытие было
сделано случайно — группа первооткрывателей планировала провести наблюдения
атмосферы Урана при покрытии Ураном звезды SAO 158687. Однако, анализируя
полученную после проведённых наблюдений информацию, они обнаружили покрытие
звезды ещё до её покрытия Ураном, причём произошло это несколько раз подряд. В
результате исследований было открыто 9 колец Урана. Когда в окрестности Урана
прибыл космический аппарат «Вояджер-2», при помощи бортовой оптики удалось
обнаружить ещё 2 кольца, тем самым увеличив общее число известных колец до 11.
В декабре 2005 года космический телескоп «Хаббл» позволил открыть ещё 2 ранее
неизвестных кольца. Они были удалены на расстояние в два раза большее, чем
ранее открытые кольца, и поэтому их ещё часто называют «внешней системой колец
Урана». Кроме колец, «Хаббл» также помог открыть два ранее неизвестных
небольших спутника, один из которых (Маб) разделяет свою орбиту с самым внешним
кольцом. Последние два кольца доводят общее количество колец Урана до 13. В
апреле 2006 года изображения новых колец, полученные обсерваторией Кек на
Гавайских островах, позволили различить цвета внешних колец. Одно из них было
красным, а другое (самое внешнее) — синим. Предполагают, что синий цвет
внешнего кольца обусловлен тем, что оно состоит из мелких частиц водяного льда
с поверхности Маб. Внутренние кольца планеты выглядят серыми.
В работах первооткрывателя Урана Уильяма Гершеля первое упоминание о
кольцах встречается в его записи от 22 февраля 1789 года. В своих примечаниях к
наблюдениям он отметил, что предполагает у Урана наличие колец. Гершель также
заподозрил наличие в них красного цвета (что и было подтверждено в 2006 году
наблюдениями обсерватории Кек в случае предпоследнего кольца). Примечания
Гершеля попали в Журнал Королевского общества в 1797 году. Однако впоследствии,
на протяжении почти двух столетий с 1797 по 1979 год, кольца в литературе не
упоминаются вовсе, что, конечно, даёт право подозревать ошибку учёного. Тем не
менее, достаточно точные описания увиденного Гершелем не дают повода просто так
сбрасывать со счетов его наблюдения.
Схема колец Урана. |
При наблюдениях с Земли можно заметить, что иногда кольца Урана своей
плоскостью повёрнуты в сторону наблюдателя. В 2007-2008 годах кольца были
обращены к наблюдателю ребром.
До начала исследований с помощью «Вояджера-2» никаких измерений магнитного
поля Урана не проводилось. Перед прибытием аппарата к орбите Урана в 1986 году
предполагалось, что оно будет соответствовать направлению солнечного ветра. В
этом случае геомагнитные полюса должны были бы совпадать с географическими,
которые лежат в плоскости эклиптики. Измерения «Вояджера-2» позволили
обнаружить у Урана весьма специфическое магнитное поле, которое не направлено
из геометрического центра планеты и наклонено на 59 градусов относительно оси
вращения. Фактически магнитный диполь смещён от центра планеты к южному полюсу
примерно на 1/3 от радиуса планеты. Эта необычная геометрия приводит к очень
асимметричному магнитному полю, где напряжённость на поверхности в южном
полушарии может составлять 0,1 гаусса, тогда как в северном полушарии может
достигать 1,1 гаусса. В среднем по планете этот показатель равен 0,23 гауссам
(для сравнения, магнитное поле Земли одинаково в обоих полушариях, и «магнитный
экватор» фактически соответствует «физическому экватору»). Дипольный момент Урана
превосходит земной в 50 раз. Кроме Урана, аналогичное смещённое и
«накренившееся» магнитное поле также наблюдается и у Нептуна — в связи с этим
предполагают, что такая конфигурация является характерной для ледяных гигантов.
Одна из теорий объясняет данный феномен тем обстоятельством, что магнитное поле
у планет земной группы и других планет-гигантов генерируется в центральном
ядре, а магнитное поле у «ледяных гигантов» формируется на относительно малых
глубинах: например, в океане жидкого аммиака, в тонкой конвективной оболочке,
окружающей жидкую внутреннюю часть, имеющую стабильную слоистую структуру.
Тем не менее, общее строение магнитосферы Урана имеет схожую структуру с
другими планетами Солнечной системы. Головная ударная волна простирается на 23 планетарных
радиуса — перед магнитопаузой, простирающейся на 18 радиусов Урана. Имеются
развитые магнитный хвост и радиационные пояса. В этом отношении Уран больше
напоминает Сатурн, но отличается от Юпитера. Магнитный хвост Урана тянется за
планетой на миллионы километров и поперечным вращением планеты искривлён «в
штопор». Магнитосфера Урана содержит заряженные частицы: протоны, электроны и
небольшое количество H2+ ионов. Никаких более тяжёлых ионов в ходе исследований
обнаружено не было. Бо́льшая часть этих частиц наверняка происходит из горячей
термосферы Урана. Энергии ионов и электронов могут достигать 4 и 1,2
мегаэлектрон-вольт (МэВ). Плотность низкоэнергетических ионов (то есть ионов с
энергией менее 100 эВ) во внутренней магнитосфере — около 2 ионов на кубический
сантиметр. Важную роль в магнитосфере Урана играют его спутники, образующие
большие полости в магнитном поле. Поток частиц достаточно высок, чтобы вызвать
затемнение поверхности или изменения в пространственном наклоне лун в течение
100 000 лет. Это может быть причиной постепенного «потемнения» спутников и
колец Урана. На Уране хорошо развиты полярные сияния, которые видны как яркие
дуги вокруг обоих полярных полюсов. Однако, в отличие от Юпитера, на Уране
полярные сияния не значимы для энергетического баланса планетарной термосферы.
Атмосфера Урана — необычно спокойная по сравнению с атмосферами других
планет-гигантов, даже по сравнению с Нептуном, который схож с Ураном и по
составу, и по размерам. Когда «Вояджер-2» приблизился к Урану, то удалось
заметить всего 10 полосок облаков в видимой части этой планеты. Такое
спокойствие в атмосфере может быть объяснено чрезвычайно низкой внутренней
температурой. Она гораздо ниже, чем у других планет-гигантов. Самая низкая
температура, зарегистрированная в тропопаузе Урана, составляет 49 К (-224 °C ), что делает
планету самой холодной среди планет Солнечной системы — даже холоднее по
сравнению с более удалёнными от Солнца Нептуном и Плутоном.
Магнитосфера Урана, исследованная Вояджером-2 в 1986 году. |
Изображение в естественном цвете (слева) и в более дальних частях видимого спектра (справа), позволяющие различить облачные полосы и атмосферный «капюшон» (снимок «Вояджера-2») |
Снимки, сделанные «Вояджером-2» в 1986 году, показали, что видимое южное
полушарие Урана можно поделить на две области: яркий «полярный капюшон» и менее
яркие экваториальные зоны. Эти зоны граничат на широте −45°. Узкая полоса в
промежутке между −45° и −50°, именуемая южным «кольцом», является самой
заметной особенностью полушария и видимой поверхности вообще. «Капюшон» и
кольцо, как полагают, расположены в интервале давления от 1,3 до 2 бар и
являются плотными облаками метана.
Зональные скорости облаков на Уране. |
К сожалению, «Вояджер-2» приблизился к Урану во время «Южного полярного
лета» и не смог зафиксировать северный полярный круг. Однако в начале XXI
столетия, когда северное полушарие Урана удалось рассмотреть через космический
телескоп «Хаббл» и телескопы обсерватории имени В. М. Кека, никакого «капюшона»
или «кольца» в этой части планеты обнаружено не было. Таким образом, была
отмечена очередная асимметрия в строении Урана, особенно яркого близ южного
полюса и равномерно тёмного в областях к северу от «южного кольца».
Помимо общей атмосферной структуры планеты, «Вояджер-2» также отметил 10
маленьких ярких облачков, большая часть которых была отмечена в области
нескольких градусов севернее «южного кольца»; во всех иных отношениях Уран
напоминал «динамически мёртвую» планету. Однако в 1990-х годах число
зарегистрированных ярких облаков значительно выросло, причём бо́льшая их часть
была обнаружена в северном полушарии планеты, которое в это время стало
видимым. Возможно, это объясняется тем, что яркие облака легче заметить в
северном полушарии, нежели в более ярком южном. В структуре облаков двух полушарий
имеются различия: северные облака менее крупные, более яркие и более вытянутые.
Судя по всему, они расположены на большей высоте. Время жизни облаков бывает
самое разное — некоторые из замеченных облаков не просуществовали и нескольких
часов, в то время как минимум одно из южных сохранилось с момента пролёта около
Урана «Вояджера-2». Недавние наблюдения Нептуна и Урана показали, что между
облаками этих планет есть и много схожего. Хотя погода на Уране более
спокойная, на нём, так же как и на Нептуне, были отмечены «тёмные пятна»
(атмосферные вихри) — в 2006 году впервые в его атмосфере был замечен и
сфотографирован вихрь.
Отслеживание различных облаков позволило определить зональные ветры, дующие
в верхней тропосфере Урана. На экваторе ветры являются ретроградными, то есть
дуют в обратном по отношению к вращению планеты направлении, и их скорости (так
как движение обратно вращению) составляют −100 и −50 м/с. Скорости ветров
стремятся к нулю с увеличением расстояния от экватора вплоть до широты ± 20°, где
ветра почти нет. Ветра начинают дуть в направлении вращения планеты вплоть до
полюсов. Скорости ветров начинают расти, достигая своего максимума в широтах
±60° и падая практически до нуля на полюсах. Скорость ветра на широте в −40°
колеблется от 150 до 200 м/с, а дальше наблюдениям мешает «Южное кольцо», своей
яркостью затеняющее облака и не позволяющее вычислить скорость ветра ближе к
южному полюсу. Максимальная же скорость ветра, замеченная на планете, была
зарегистрирована на северном полушарии на широте +50° и равняется более чем 240
м/с.
Первый атмосферный вихрь, замеченный на Уране. Снимок получен «Хабблом». |
Уран. 2005 год. Видно «южное кольцо» и яркое облачко на севере. |
Мира́нда — самый близкий и наименьший из пяти крупных спутников Урана. |
Ариэль — четвёртый по величине и самый яркий из 27 спутников Урана. |
Умбриэ́ль — спутник планеты Уран, открытый Уильямом Ласселом 24 октября 1851 года. Назван в честь гнома — персонажа поэмы английского поэта Александра Поупа «Похищение локона». |
Тита́ния — крупнейший спутник Урана и восьмой по массивности спутник в Солнечной системе. |
В 1986 году космический аппарат НАСА «Вояджер-2» по пролётной траектории пересёк орбиту Урана и прошёл в
Оберо́н — второй по величине и массе внешний спутник Урана и девятый по массе спутник Солнечной системы. |
Орбитальные
характеристики
Перигелий
18,375 518 63 а. е.
Афелий
20,083 305 26 а. е.
Большая
полуось (a)
19,229 411 95 а. е.
Эксцентриситет
орбиты (e)
0,044 405 586
Сидерический
период обращения
30 799,095 дней
84,323 326 года
Синодический
период обращения
369,66 дней
Орбитальная
скорость (v)
6,81 км/с
Средняя
аномалия (Mo)
142,955717°
Наклонение
(i)
0,772556°
6,48°
относительно солнечного экватора
Долгота
восходящего узла (Ω)
73,989821°
Аргумент
перицентра (ω)
96,541318°
Спутники
27
Физические
характеристики
Полярное
сжатие
0,02293
Экваториальный
радиус
Полярный
радиус
Площадь
поверхности (S)
8,1156·109 км²
Объём
(V)
6,833·1013 км³
Масса
(m)
8,6832·1025 кг
Средняя
плотность (ρ)
1,27 г/см³
Вторая
космическая скорость (v2)
21,3 км/c
Экваториальная
скорость вращения
2,59 км/с
Период
вращения (T)
0,71833 дней
17 ч 14 мин 24 с
Наклон
оси
97,77°
Прямое
восхождение северного полюса (α)
17 ч 9 мин 15 с
257,311°
Склонение
северного полюса (δ)
−15,175°[3]
Альбедо
0,300 (Бонд)
0,51 (геом.)
Видимая
звёздная величина
5,9 — 5,32
Угловой
диаметр
3,3"—4,1"
Температура
уровень 1
бара 76 K
0,1 бара (тропопауза) 49 К (−224 °C) 53
К (−220 °C) 57 К (−216 °C)
Атмосфера
Состав:
83±3 % Водород
(H2)
15±3 % Гелий
2,3 % Метан
Лёд
аммиачный
водяной
гидросульфидно-аммиачный
метановый
Комментариев нет:
Отправить комментарий